Laboratoire IMATH

Institut de Mathématiques de Toulon (EA 2134)

logoUTLN

Séminaire de Giuseppe Buttazzo (Université de Pisa)

Séminaire de Modélisation et d’Analyse appliquée
24 Octobre 2024, 14h00

Optimal domains for the Cheeger inequality

We study a generalized form of the Cheeger inequality by considering the shape functional $F_p,q(\Omega)=\lambda_p^1/p(\Omega)/\lambda_q^1/q(\Omega)$, where the original Cheeger case corresponds to $p=2$ and $q=1$. Here $\lambda_p(\Omega)$ denotes the principal eigenvalue of the Dirichlet $p$-Laplacian. The infimum and the supremum of $F_p,q$ are discussed, together with the existence of optimal domains. Some open problems will be illustrated as well.

Séminaire de Giuseppe Buttazzo (Université de Pisa)